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Coreference Resolution and Mentions: An Example

“ I voted for Mary because Mary was most aligned with Jack’s values”, John said.
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Discrepancy Between Linguistic Theory and Coref Models

* Singletons are important theoretically and empirically
* Relate to how humans understand discourse and entity coherence (Grosz et al., 1995)

* Singletons correspond to true negatives (Kiibler and Zhekova, 2011)

*  Gold singletons improve coreference scores and help for generalization (Zhu et al, 2023)

« Existing datasets & models
*  OntoNotes lacks singleton annotation

— models do pay attention to singleton spans

* Limited interpretability of existing models




Utilizing Singletons from OntoNotes

* Use gold syntax structures (Raghunathan et al., 2010; Clark and Manning, 2015, 2016)

 Problems with these methods

*  Extracting NP subtrees — high recall in mention detection
BUT generates a large number of precision errors (spans that are not valid mentions)

®  Generic! you is a valid NP but is not a mention candidate for pair matching

®  See example in the next slide
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Figure 1: An example of the utilization of a syntax tree for the extraction of mentions. Solid box: NP is a candidate for
coreference linking in OntoNotes. Dashed box: NP is not categorized as a mention.



Utilizing Singletons from OntoNotes

* Generate silver singletons for the corpus (Recasens et al., 2013; Toshniwal et al., 2021)

 Problems with these methods

* Biased pseudo-mentions
*  Missing atypical spans with semantic and syntactic disparities

*  Challenging evaluation

*  Unknown about the impact of mention detection to downstream coreference scores




Model Architecture

usually makesound
like is
something unattainable . \
Yes , when talked \\
aboutin »
,seemed to be

only done through

\ the Internet|...

OntoNotes
Train

NP Classifier

1019319Q UONUIN|

—
S—
S—

OntoNotes NNER Pred
Dev/Test

13Ul 92U3.3)210)

We usually make it sound
like e-government s
something unattainable .
Yes , when we talked
about in
the past ,seemed to be
only done through

__|the Internet ...

Coref Pred




Model Architecture: Nominal Phrase Extraction
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Nominal Phrase Extraction: Mention Classification

e  Model
*  XGBoost

* Features
*  Mention-based features of the current NP, its parent phrases, and child phrases
* POS tags
®  The usage of prepositions
®*  Definite markers
®*  Grammatical roles

*  Adverbial tags

* Features from other NPs that overlap with the current one
®  Their relative positions or hierarchical levels among other NPs
® The largest and smallest interactive NP spans




Nominal Phrase Extraction: Mention Classification

* Dataset: required components

*  Gold syntax trees (constituency)

. OntoNotes
o ARRAU-RST news genre

¢ Mention span annotation with OntoNotes

*  ARRAU super set (mostly)

° OntoGUM
*  Singletons

 ARRAU

° OntoGUM

» Usage of the datasets
o Training: ARRAU-RST
— map gold NPs to near-gold singletons
o Evaluation: ARRAU and OntoNotes

Dataset | P | R | F1
ARRAU 28.15 | 97.78 | 44.35
OntoNotes | 39.46 | 91.65 | 55.16

Table 1: Results of coreference markables on ARRAU
and OntoNotes test captured by the XGBoost classifier.

OntoNotes (Pradhan et al., 2013); ARRAU (Poesio et al., 2018); OntoGUM (Zhu et al, 2021)




Model Architecture: Mention Detection
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Mention Detection

e Dataset
® Training: OntoNotes
*  Use the classifier trained on ARRAU to predict positive and negative labels within the
OntoNotes training dataset

* Take the union of the classifier’s outputs (positive labels) and gold coreference markables from

the OntoNotes training set

®*  FEvaluation set
®*  OntoNotes
*  OntoGUM




OntoNotes singleton data is

Mention Detection publicly available!

*  Model: Nested named-entity recognition (NNER) model
*  Sequence-to-set (Tan et al., 2021)

e Focus on span
« Ignore entity type, i.e., assign the same entity type abstract to every span

Data | Precision | Recall | F1

ONTONOTES-dev | 37.84 (18,321/48,419) | 95.64 (18,321/19,156) | 54.22
ONTONOTES-test | 37.75 (19,018/50,736) | 96.23 (19,018/19,764) | 54.23
ONTOGUM-test | 37.21 ( 2,439/ 6,554) | 91.66 ( 2,439/ 2,661) | 52.94

Table 2: Mention detection performance on OntoNotes dev/test set and OntoGUM test set.
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Coreference Model: Training

* Baseline end-to-end (Lee et al, 2017,

SPLICE

2018; Joshi et al, 2020) *  Assign identical mention scores to all spans
*  Consider a/l span possibilities during from mention detection
coreference linking »  Utilize a trainable parameter w,, for the

*  Keep a fixed number of spans with top markable score

scores for coreference clustering

9i = [Xstart(i) Xena(iy Xi ()] s —w
Sm = FFNNy,(9;:) m — m




Coreference Model: Inference

* Inference (SPLICE)

* !'mention spans and gold syntax trees cannot be used at test time
*  Two steps

*  Plain input — Mention detector — Nested mentions

*  Nested mentions — Coreference model — Coreference chains




Coreference Model: In-domain Results

* Comparable performance with the baseline model

. . 3
Mention Detection MUC B CEAF 44 Avg. F1
P R F1 P R F1 P R F1 P R F1
Joshi et al. (2020) 89.1 865 87.8 | 858 848 853 783 779 781 764 742 753 | 796
Ours+MD 888 873 881 | 86 845 851 788 770 779 758 744 751 | 794 |
Ours+MD+GM (upperbound) | 90.9 913 911 | 879 886 883 814 827 820 803 799 80.1 83.5

Table 3: Results on OntoNotes test set. MD denotes the model uses predictions from the mention detector; GM indicates
the model uses gold coreference markables.




Coreference Model: In-domain Results

*  Optimal scenario (gold markables) marks a nearly 4-point increase

Mention Detection MUC B3 CEAF 44
P R F P R F1 P R F1 P R Ff

858 848 853 783 779 781 764 742 75.3{ 796 -

Avg. F1

Joshi et al. (2020)
Ours+MD
Ours+MD+GM (upperbound)

891 865 87.8
88.8 873 881
909 913 911

85.6 845 851 788 77.0 779 758 744 751 794 |
879 886 883 814 827 820 803 799 80.1

N 83.5 y

Table 3: Results on OntoNotes test set. MD denotes the model uses predictions from the mention detector; GM indicates
the model uses gold coreference markables.




Coreference Model: Out-of-domain Results

* Improved mention detection scores

Mention Detection MUC B3 CEAF 44 Ava. F1

P R Fi P R Fi P R Fi P R F1 g
Joshi et al. (2020) 86.0 706 775 | 800 681 736 679 605 640 686 505 582 | 65.3
Ours+MD 853 735 789 { 788 706 745 665 635 649 683 520 590 | 66.4
Ours+GS (upperbound) 90.8 748 82.0 848 724 78.1 742 656 696 757 556 64.2 70.8

Table 4: Results on OntoGUM test set. GS indicates that our model uses gold singletons.




Coreference Model: Out-of-domain Results

*  Outperform the baseline model by 1.1 points

Mention Detection MUC B3 CEAF 44 Ava. F1
P R Fi P R Fi P R Fi P R F1 g
Joshi et al. (2020) 86.0 706 775 | 80.0 68.1 736 679 605 640 686 505 582 653 -
Ours+MD 863 735 789 | 788 706 745 665 635 649 683 520 59.0 . 66.4
Ours+GS (upperbound) 90.8 748 82.0 848 724 78.1 742 656 696 757 556 64.2 70.8

Table 4: Results on OntoGUM test set. GS indicates that our model uses gold singletons.




Coreference Model: Out-of-domain Results

*  Optimal scenario (gold mentions) marks a 5.5-point increase

Mention Detection
P R F1 P R F1 P R F1 P R

MUC B3 CEAF 44

F1 ‘ Avg. F1
Joshi et al. (2020) 86.0 706 775 | 80.0 68.1 736 679 605 640 686 505 582 65.3 -
Ours+MD 863 735 789 | 788 706 745 665 635 649 683 520 59.0 66.4 |
Ours+GS (upperbound) 90.8 748 82.0 848 724 78.1 742 656 696 757 556 64.2 70.8 )

Table 4: Results on OntoGUM test set. GS indicates that our model uses gold singletons.
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Effect of Mention Detection: Precision
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Effect of Mention Detection: Observation

Precision errors affect performance even with

independent mention detector
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Effect of Mention Detection: Observation

Precision improvement offers more
significant benefits than recall for future

coreference models
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Effect of Mention Detection: Qualitative Analysis

Recall

Missing nested entity: Once the [Zhuhai - [Hong Kong| - Macao] bridge is built, it will no
longer be a dream of tourists to enjoy gourmet food in Macao before having fun at Disneyland
just an hour later .

Attachment of Prepositional Phrases: He just told [a story] uh from the beginning to the
end.

Garden-path sentences: Like [the bones] xrays of his wisdom teeth also tell us something
about his age.

Missing verbal referents: ... American military officials are now convinced that a unit

of Marines [killed]4126 some 24 unarmed Iraqis ... One government official stated that [this
atrocity| 4106 showed “ a total breakdown in morality . "

Gold Annotation Errors: They can volunteer at [any] [of thousands of non-profit institutions] ,
or participate in service programs required by high schools or encouraged by colleges or employ-
ers .

Precision

Redundant punctuations: [one .]
Redundant non-restrictive relative clauses: [5 p.m. EST — when stocks there plunged.]
Generic NPs: no media

Table 5: Major categories of recall and precision errors in OntoNotes dev set.



Conclusion

* A mention detection classifier that extracts mentions from syntactic structures and

achieves ~94% recall
* A near-gold singleton annotated version of OntoNotes

* A pipeline-based neural coreference system, named SPLICE, using singletons,

yielding results on par with the e2e approach in-domain and a +1.1 boost OOD

* Conduct a comprehensive analysis of the effect of mention detection to coreference

linking

* Release data and code at: https://github.com/yilunzhu/splice



https://github.com/yilunzhu/splice
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