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Coreference Resolution and Mentions: An Example

“ I voted for Mary because Mary was most aligned with Jack’s values”, John said.
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SingletonsMarkables

“ I voted for Mary because Mary was most aligned with Jack’s values”, John said.



Discrepancy Between Linguistic Theory and Coref Models

• Singletons are important theoretically and empirically
• Relate to how humans understand discourse and entity coherence (Grosz et al., 1995)
• Singletons correspond to true negatives (Kübler and Zhekova, 2011)
• Gold singletons improve coreference scores and help for generalization (Zhu et al, 2023)

• Existing datasets & models
• OntoNotes lacks singleton annotation
 → models do pay attention to singleton spans
• Limited interpretability of existing models



Utilizing Singletons from OntoNotes

• Use gold syntax structures (Raghunathan et al., 2010; Clark and Manning, 2015, 2016)

• Problems with these methods
• Extracting NP subtrees →  high recall in mention detection
 BUT generates a large number of precision errors (spans that are not valid mentions)

• Generic you is a valid NP but is not a mention candidate for pair matching
• See example in the next slide



Figure 1: An example of the utilization of a syntax tree for the extraction of mentions. Solid box: NP is a candidate for 
coreference linking in OntoNotes. Dashed box: NP is not categorized as a mention.



Utilizing Singletons from OntoNotes

• Generate silver singletons for the corpus (Recasens et al., 2013; Toshniwal et al., 2021)

• Problems with these methods
• Biased pseudo-mentions

• Missing atypical spans with semantic and syntactic disparities
• Challenging evaluation

• Unknown about the impact of mention detection to downstream coreference scores



Model Architecture

OntoNotes
Train NP Classifier

OntoNotes
Dev/Test

M
ention

Detector

NNER Pred

We usually make it sound
like e-government is 
something unattainable .
Yes , when we talked
about e-government in
the past , it seemed to be
only done through
the Internet …

Coreference
Linker

Coref Pred

We usually make it sound
like e-government is
something unattainable .
Yes , when we talked
about e-government in
the past , it seemed to be
only done through
the Internet …

Gold Markables



OntoNotes
Train NP Classifier

OntoNotes
Dev/Test

M
ention

Detector

NNER Pred

We usually make it sound
like e-government is 
something unattainable .
Yes , when we talked
about e-government in
the past , it seemed to be
only done through
the Internet …

Coreference
Linker

Coref Pred

We usually make it sound
like e-government is
something unattainable .
Yes , when we talked
about e-government in
the past , it seemed to be
only done through
the Internet …

Gold Markables

Model Architecture: Nominal Phrase Extraction

OntoNotes
Train NP Classifier

OntoNotes
Dev/Test

M
ention

Detector

NNER Pred

We usually make it sound
like e-government is 
something unattainable .
Yes , when we talked
about e-government in
the past , it seemed to be
only done through
the Internet …

Coreference
Linker

Coref Pred

We usually make it sound
like e-government is
something unattainable .
Yes , when we talked
about e-government in
the past , it seemed to be
only done through
the Internet …

Gold Markables



Nominal Phrase Extraction: Mention Classification

• Model
• XGBoost

• Features
• Mention-based features of the current NP, its parent phrases, and child phrases

• POS tags
• The usage of prepositions
• Definite markers
• Grammatical roles
• Adverbial tags
• ...

• Features from other NPs that overlap with the current one
• Their relative positions or hierarchical levels among other NPs
• The largest and smallest interactive NP spans



Nominal Phrase Extraction: Mention Classification

• Dataset: required components
• Gold syntax trees (constituency)

• OntoNotes
• ARRAU-RST news genre

• Mention span annotation with OntoNotes
• ARRAU super set (mostly)
• OntoGUM

• Singletons
• ARRAU
• OntoGUM

• Usage of the datasets
• Training: ARRAU-RST
  → map gold NPs to near-gold singletons
• Evaluation: ARRAU and OntoNotes

Table 1: Results of coreference markables on ARRAU 
and OntoNotes test captured by the XGBoost classifier.

OntoNotes (Pradhan et al., 2013); ARRAU (Poesio et al., 2018); OntoGUM (Zhu et al, 2021)
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Mention Detection

• Dataset
• Training: OntoNotes

• Use the classifier trained on ARRAU to predict positive and negative labels within the 
OntoNotes training dataset

• Take the union of the classifier’s outputs (positive labels) and gold coreference markables from 
the OntoNotes training set

• Evaluation set
• OntoNotes
• OntoGUM



Mention Detection

• Model: Nested named-entity recognition (NNER) model
• Sequence-to-set (Tan et al., 2021)

• Focus on span
• Ignore entity type, i.e., assign the same entity type abstract to every span

Table 2: Mention detection performance on OntoNotes dev/test set and OntoGUM test set.

OntoNotes singleton data is
publicly available!
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Coreference Model: Training

• Baseline end-to-end (Lee et al, 2017,
2018; Joshi et al, 2020)
• Consider all span possibilities during 

coreference linking
• Keep a fixed number of spans with top 

scores for coreference clustering

• SPLICE
• Assign identical mention scores to all spans

from mention detection
• Utilize a trainable parameter 𝑤! for the 

markable score

𝑔" =	 [𝑥#$%&$("), 𝑥)*+("), (𝑥" , 𝜑(𝑖)]
𝑠! = 𝐹𝐹𝑁𝑁,(𝑔")

𝑠! = 𝑤!



Coreference Model: Inference

• Inference (SPLICE)
• ! mention spans and gold syntax trees cannot be used at test time
• Two steps

• Plain input→ Mention detector→ Nested mentions
• Nested mentions→ Coreference model→ Coreference chains 



Coreference Model: In-domain Results

Table 3: Results on OntoNotes test set. MD denotes the model uses predictions from the mention detector; GM indicates 
the model uses gold coreference markables.

• Comparable performance with the baseline model
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Table 3: Results on OntoNotes test set. MD denotes the model uses predictions from the mention detector; GM indicates 
the model uses gold coreference markables.

• Comparable performance with the baseline model
• Optimal scenario (gold markables) marks a nearly 4-point increase



Coreference Model: Out-of-domain Results

Table 4: Results on OntoGUM test set. GS indicates that our model uses gold singletons.

• Improved mention detection scores
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Coreference Model: Out-of-domain Results

Table 4: Results on OntoGUM test set. GS indicates that our model uses gold singletons.

• Improved mention detection scores
• Outperform the baseline model by 1.1 points
• Optimal scenario (gold mentions) marks a 5.5-point increase



Effect of Mention Detection: Recall

• Figure
• Horizontal dashed line: baseline 
• Rounded data point: F1 from SPLICE

• Method
• Randomly add gold coreference markables 

to increase recall score
• Optimal Scenario

• Recall=100, Avg. F1 79→ 82

x-axis: mention detection
y-axis: coref



Effect of Mention Detection: Precision

• Figure
• Horizontal dashed line: baseline 
• Rounded data point: F1 from SPLICE
• Vertical dashed line: Best precision with gold

singletons
Estimation of mentions: 19K×2 / 48K ≈ 80%

• Method
• Randomly remove error predictions to 

increase precision score
• Optimal Scenario

• Precision=80, Avg. F1 79 → 85

x-axis: mention detection
y-axis: coref



Effect of Mention Detection: Observation

• Reducing both mention precision and recall 
errors increase coreference resolution 
performance
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Effect of Mention Detection: Observation

• Reducing both mention precision and recall 
errors increase coreference resolution 
performance

• Precision errors affect performance even with
independent mention detector

• Precision improvement offers more 
significant benefits than recall for future 
coreference models



Effect of Mention Detection: Qualitative Analysis

Table 5: Major categories of recall and precision errors in OntoNotes dev set.



Conclusion

• A mention detection classifier that extracts mentions from syntactic structures and
achieves ∼94% recall

• A near-gold singleton annotated version of OntoNotes
• A pipeline-based neural coreference system, named SPLICE, using singletons, 

yielding results on par with the e2e approach in-domain and a +1.1 boost OOD
• Conduct a comprehensive analysis of the effect of mention detection to coreference

linking
• Release data and code at: https://github.com/yilunzhu/splice

https://github.com/yilunzhu/splice
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