

Can Large Language Models Understand Context?

Yilun Zhu¹, Joel Ruben Antony Moniz², Shruti Bhargava², Jiarui Lu² Dhivya Piraviperumal², Site Li², Yuan Zhang², Hong Yu², Bo-Hsiang Tseng²

²Apple

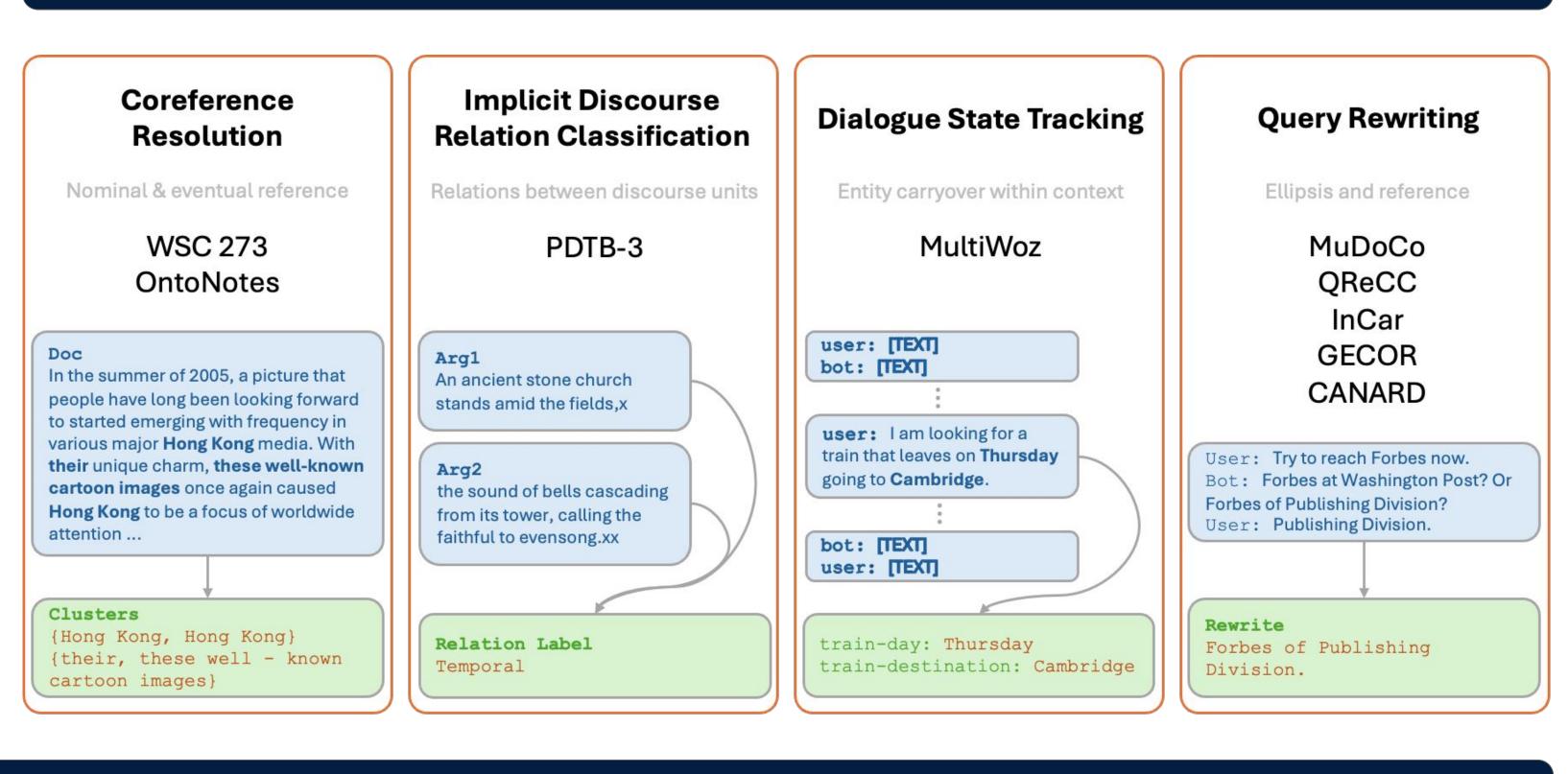
¹Georgetown University

EACL 2024

Introduction

- Motivation
 - Understanding context is key to understanding human language, and an essential ability for Large Language Models (LLMs).
 - The size of LLMs hinders the deployment of large models to personal devices and restricts the on-device performance of language understanding tasks.
- NLP tasks that demand a nuanced comprehension of linguistic features within a provided context are under studied in previous LLM evaluations.
- Our context understanding benchmark aims to provide a comprehensive and in-depth evaluation of LLMs from multiple linguistic perspectives.
- We study the performance of various dense and 3-bit quantized LLMs on the query rewriting task.

► The Context Understanding Benchmark



Experiments

- Three model families
 - OPT (Zhang et al., 2022)
 - LLaMA (Touvron et al., 2023)
 - GPT (OpenAI, 2023)
- Various model sizes
 - o OPT: 125M, 350M, 1.3B, 2.7B, 6.7B, 13B, 30B
 - LLaMA: 7B, 13B, 30B
 - o GPT: 3.5-turbo

Instruction: Given two arguments and a list of connective words, please select the most likely connective between two arguments.

[Relation Description]

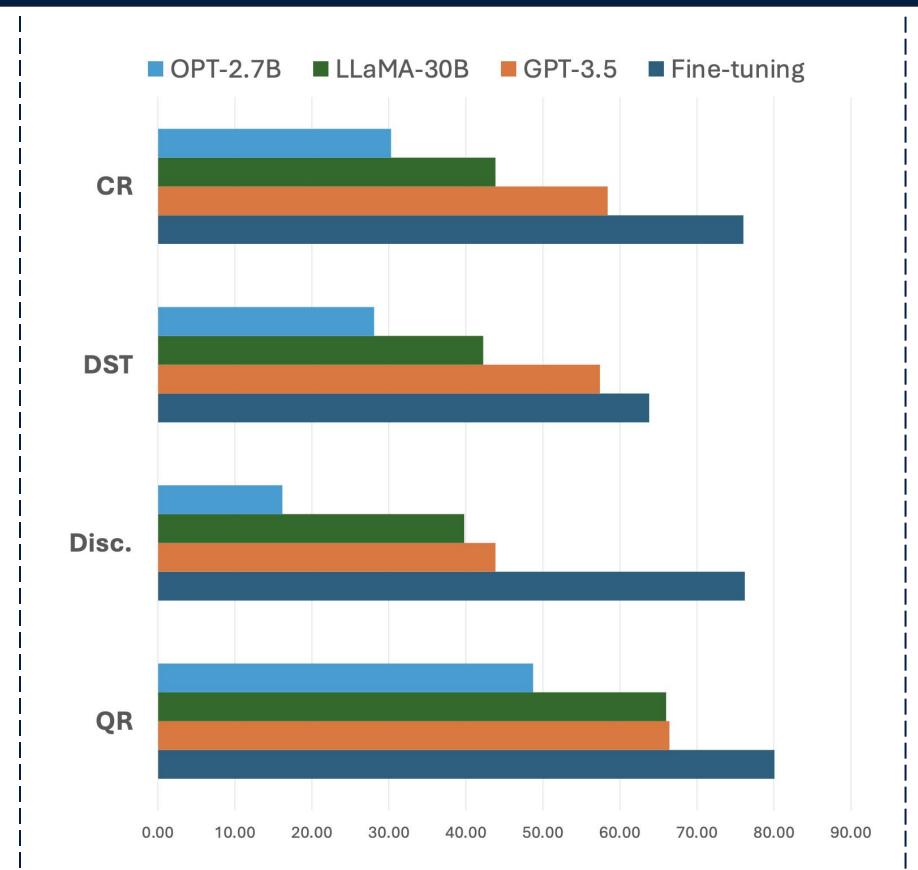
Arg 1: Amcore, also a bank holding company, has assets of \$1.06 billion.

Arg 2: Central's assets are \$240 million.

Question: What is the connective that best describes the relation between two arguments? **Choices:**

A. Temporal B. Contingency C. Comparison D. Expansion Answer: C

Table 3: A PDTB example of prompt and *answer*.



Comparison between commercial/noncommercial models and fine-tuning models for each task in the context understanding benchmark.

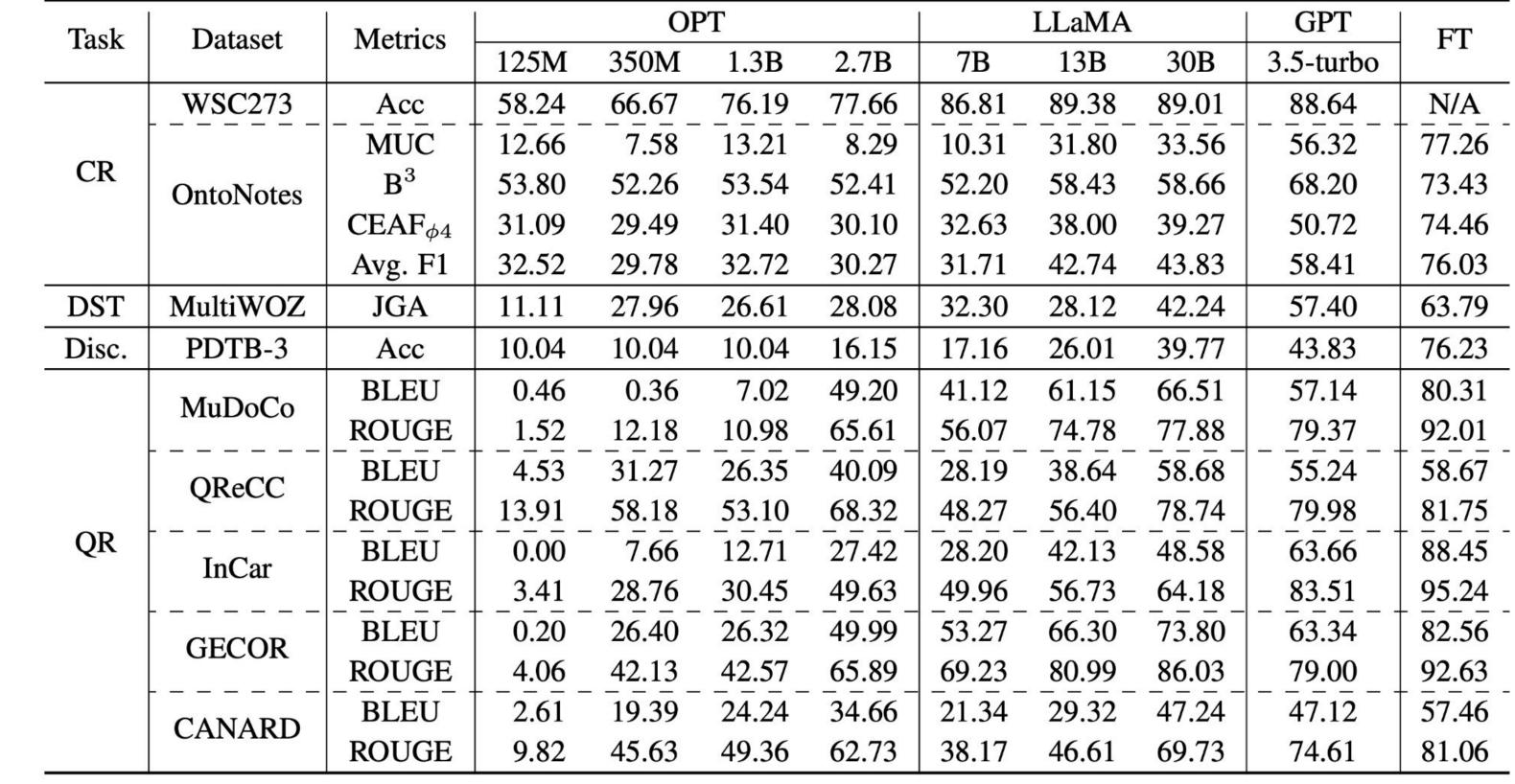


Table 5: Few-shot results of two open-sourced models and GPT-3.5 on the context understanding benchmark. The results with the best number of few-shot examples are reported for each task. Fine-tuning (FT) results serves as a reference when evaluating LLMs' capability under ICL setup.

▶ Dense vs. Quantized (Query Rewriting)

3-bit post-training quantization GPTQ (Frantar et al., 2022)

Two types of errors

- Error type 1: repeat the last query
- Error type 2: language modeling

Example

- User: what is the name of india pakistan border line
- The Radcliffe Line was the boundary demarcation line between the Indian and Pakistani portions of the Punjab and Bengal provinces of British India.
- User: who created the radcliffe line
- Bot: The Radcliffe Line was named after its architect, Sir Cyril Radcliffe, who was the joint chairman of the two boundary commissions for the two provinces.

User: when was the line published

Gold answer: when was the radcliffe line published

Prediction 1 (repeat the last query): when was the line published

Prediction 2 (language modeling): 1947

		V-1-0-0-0		No. and Street Control
Dataset	Metrics	7B-D	30B-Q	30B-D
WSC273	Acc	86.81	87.18	89.01
	MUC	10.31	25.37	33.56
OntoNotes	B^3	52.20	56.80	58.66
	$CEAF_{\phi4}$	32.63	36.93	39.27
	Avg. F1	31.71	39.70	43.83
MultiWOZ	JGA	32.30	41.99	42.24
PDTB-3	Acc	17.16	31.29	39.77
MuDoCo	BLEU	41.12	59.22	66.51
MuDoco	ROUGE	56.07	71.38	77.88
QReCC	BLEU	28.19	53.72	58.68
QRECC	ROUGE	48.27	74.13	78.74
InCar	BLEU	28.20	39.69	48.58
	ROUGE	49.96	56.32	64.18
GECOR	BLEU	53.27	70.41	83.36
GECOR	ROUGE	69.23	73.80	86.03
CANARD	BLEU	$\frac{1}{21.34}$	45.07	47.24
CANARD	ROUGE	38.17	67.15	69.73

Table 6: Comparison between dense and quantized models. Dense LLaMA-7B and 3-bit quantized LLaMA-30B share similar memory and disk requirements. **D** represents dense model and **Q** denotes quantized model.

Type	Dataset	7B D	30B Q	30B D
Repeat	MuDoCo	260	247	194
	QReCC	86	90	26
	InCar	17	15	8
	GECOR	59	62	37
	CANARD	47	44	32
	Total	469	458	297
LM	MuDoCo	71	29	16
	QReCC	80	28	16
	InCar	19	20	15
	GECOR	6	1	0
	CANARD	127	76	59
	Total	232	125	106

Table 9: Number of the major two types errors on three LLaMA models (7B dense, 30B quantized, and 30B dense) found in query rewriting. Repeat stands for repeat-the-last-query error and LM denotes language modeling error.

► OPT vs. LLaMA (Query Rewriting)

- Prior works (Beeching et al., 2023) have consistently shown that, under the same model size, LLaMA outperforms OPT
- Our findings (query rewriting)
 - Model size ~7B
 - OPT > LLaMA
 - Model size ~13B
 - OPT ≈ LLaMA

Model size ~30B

■ OPT < LLaMA</p>

Dataset	6.7/7B		13B		30B	
	O.	L.	O.	L.	Ο.	L.
Mudoco	53.1	41.1	55.2	61.1	55.2	66.5
	71.8	_56.0	72.1	_74.7	71.5	_77.8
QReCC	46.6	28.1	43.7	38.6	43.8	58.6
	73.4	_48.2	71.6	_56.4	71.9	_78.7
InCar	40.3	28.2	41.9	42.1	44.6	48.5
	64.8	49.9	62.6	56.7	65.3	64.1
GECOR	58.8	53.2	60.9	66.3	58.2	73.8
	75.7	69.2	78.3	80.9	76.1	86.0
CANARD	43.8	21.3	37.5	29.3	41.3	47.2
	72.0	38.1	66.0	46.6	69.3	69.7

Table 7: Comparison between OPT (O.) and LLaMA (L.) across five query rewrite datasets. For each dataset, the first and second rows represent BLEU and ROUGE scores respectively.

Conclusion

Paper

- Introduce a context understanding benchmark designed to assess the performance of LLMs.
- LLMs under in-context learning struggle with nuanced linguistic features within this challenging benchmark, exhibiting inconsistencies with other benchmarks that emphasize other aspects of language.
- 3-bit post-training quantization reduces the general understanding capacity of context to different extent across the 4 tasks.

