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The Coreference Resolution Task 

“I voted for Mary because Mary was most aligned with my values”, John said.



Problems of Existing Coreference Datasets
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Problems of Existing Out-of-domain Evaluation

• No study has investigated if contextualized embeddings encounter the same 

overfitting problem identified by Moosavi and Strube (2017)

• Previous work may underestimate the performance degradation on 

WikiCoref
• embeddings were also trained on Wikipedia themselves (Moosavi and Strube, 2018)

• -> higher coreference scores on Wikipedia texts



OntoGUM Dataset

• Conversion from GUM using gold standard syntax trees

• Statistics
• 168 documents with 12 genres, ~150K tokens

• 19,378 mentions, 4,471 clusters

• Genres
• Text: News / Fiction / Bio / Academic / Forum / Travel / How-to / Textbook

• Speech: Interview / Political / Vlog / Conversation

https://github.com/yilunzhu/ontogum



• OntoNotes ⊆GUM
• Don’t need human annotation to recognize additional mentions in the conversion process

• Annotation layers used in the conversion
• Coreference layer
• Gold syntax trees

• Gold speaker information (fiction, reddit and spoken data)

• Annotation agreement
• Agreement study on 3 docs (2,500 tokens, 371 mentions), 8/371 errors
• Span detection: ~0.96 CoNLL coreference score: ~0.92

Figure1: Gold Syntax in GUM

Dataset Conversion

GUM: Kim visited Seoul … The visit …

OntoGUM: Kim visited Seoul … The visit …
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Models OntoNotes OntoGUM

dcoref (Manning et al. 2014, CoreNLP) 57.8

e2e + SpanBERT (Joshi et al., 2019, SOTA) 79.6



• Both systems encounter a substantial degradation on OntoGUM
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• Genre disparity does not guarantee 

low performance (e.g., vlog), and 

errors occur readily even in 

overlapping genres (e.g., news)

• Performance is correlated with the 

proportions of pronouns
Table 1: Genre-breakdown Statistics of OntoGUM
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low performance (e.g., vlog), and 

errors occur readily even in 

overlapping genres (e.g., news)

• Performance is correlated with the 

proportions of pronouns or gold 

speaker information
Table 1: Genre-breakdown Statistics of OntoGUM



Conclusion

• We release the largest open, gold, coreference dataset with new genres 

following the OntoNotes scheme

• Results showed a lack of generalizability of existing systems, especially in 

genres low in pronouns and lacking speaker information

• A genre-by-genre analysis reveals relative strengths and weaknesses  of  

current approaches



Conclusion

• We release the largest open, gold, coreference dataset with new genres 

following the OntoNotes scheme

• Results showed a lack of generalizability of existing systems, especially in 

genres low in pronouns and lacking speaker information

• A genre-by-genre analysis reveals relative strengths and weaknesses  of  

current  approaches

We hope people can use OntoGUM as an out-of-domain

benchmark for systems developed using OntoNotes!


